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ABSTRACT

Soil microbial fuel cells are a promising source of energy for outdoor
sensor networks. These biological systems are sensitive to environ-
mental conditions, therefore more data is needed on their behavior
“in the wild” to enable the creation of an energy system capable
of being widely deployed. Prior work on early characterization of
microbial fuel cells relied on extremely accurate, but expensive,
logging hardware. To scale up the number of deployment sites, we
present custom logging hardware, specially designed to accurately
monitor the behavior of microbial fuel cells at low cost. This paper
describes the design and evaluation of the board, which is open
source and freely available on GitHub.
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1 INTRODUCTION

As the demand for renewable energy grows, research into novel
power sources becomes more valuable. Microbial fuel cells (MFCs)
convert chemical energy into electrical energy by harnessing the
electrons offloaded by exoelectrogenic microbes as they oxidize
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Figure 1: System diagram of a soil-based MFC. Microbes colo-
nize the carbon anode to form a biofilm and donate electrons
to cause a potential difference.

organic matter. These exoelectrogenic microbes are common in
soil, wetlands, and wastewater. Prior research on wastewater MFCs
have demonstrated their value as a potential sources of clean and
renewable energy for low-power applications such as wastewater
treatment and powering small sensors [1]. Unlike solar power, MFCs
can work without light and unlike chemical fuel cells, MFCs do
not become depleted over time. In soil MFCs, the natural processes
in the soil continuously replenish the nutrient supply that the
microbes consume to produce power. In testing of soil MFCs there
is no evidence that they harm the surrounding environment. More
concrete testing has shown wastewater MFCs can contribute to
wastewater treatment[23].

Despite their promise as a ubiquitous power source for outdoor
sensor networks, we need more insight into how Soil MFCs respond
to different environmental conditions. Soil MFCs are highly reactive
to their environment due to being biochemical systems. MFCs can
exhibit large swings in power output due to conditions such as the
type of soil, weather, and human-driven interventions like irrigation
or soil amendments. Therefore more data needs to be collected
to build an understanding on how MFCs react to environmental
conditions.

Early work in deploying and monitoring soil-based MFCs [10,
17, 18] relies on data loggers that, while very accurate, are prohibi-
tively expensive when purchased as a commercial product. To make
larger-scale deployments more feasible, we developed a lower cost
alternative optimized specifically for MFC monitoring. Our custom
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Figure 2: Our soil power sensor board has adjustable gain
settings, directionality, and resistance to be able to detect a
wide range of low voltage inputs. The board design files are
freely available on GitHub [16].

soil power sensor board (Figure 2) was designed to monitor the low
voltage and current levels typical of soil MFCs. The cost of each
board was $53.71, compared to $1, 500 for the commercially avail-
able Rocketlogger. The remainder of this paper details the design of
the soil power sensing board, and evaluates its performance against
existing data acquisition systems.

2 BACKGROUND
2.1 Microbial Fuel Cells

Microorganisms derive energy for metabolism and growth by cat-
alyzing redox reactions. This involves the transfer of electrons
between a donor and an acceptor. Microorganisms harvest energy
for growth and maintenance from organic matter in the soil, which
acts as the electron donor. Among these microorganisms, exoelec-
trogenic bacterial species transport the electrons generated from
soil organic matter oxidation out of their cell membrane, using
external chemicals such as soil iron oxides as a solid state electron
acceptor. By replacing the external electron acceptor with an anode
and allowing the electrons to flow to a cathode (where a terminal
electron acceptor such as oxygen is present), a soil microbial fuel
cell can be constructed (see Figure 1). These bacteria are naturally
occurring and found in almost every type of soil [14]. Thus, given
time and organic matter, exoelectrogenic microbes grow to form a
bio-film on the anode, leading to small but steady power production
on the order of 1 uW to 200 pW. While wastewater and sediment
MFCs have a strong body of existing research [6, 22, 23], soil MFCs
have seen comparatively less investigation, especially outside the
lab and targeting real world applications.

MFC power production is affected by soil properties, environ-
mental conditions, and microbial communities. Different types of
soil result in a wide range of power generating abilities [3]. To
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better characterize soil based MFCs, they should be monitored for
periods of weeks to months, across a wide range of environments
and conditions.

2.2 Power sensing

Commercial available data acquisition systems tend to be specialty
test equipment, which can cost thousands of dollars. Even lower-
cost systems, such as the RocketLogger [21], cost approximately
1, 500$ for one unit! that can be used to measure two cells. The Rock-
etlogger has a minimum sampling rate of 1 kSPS, which is unneces-
sarily high for MFCs. MFCs power output changes on timescales of
days. The high sampling rate is excessive for monitoring. Reducing
the sampling rate requires less specialized hardware reducing cost
and decreases power consumption.

There exists three other options that are worth mentioning, the
Shepherd[5], Current Ranger[4], and uCurrent[2]. The Current
Ranger and uCurrent are similar enough that only CurrentRanger
was investigated as it was more applicable to our problem.

While the Shepherd is accurate enough for monitoring MFCs, it
was designed as a testbed for IoT devices. One of the main features
of the Shepherd is allowing for simulation of energy output from
energy harvesters. This is not much use for characterizing MFCs as
power output is only being recorded. The Shepherd is not commer-
cially available, thus requiring component sourcing and assembly.
For this reason, a validation of the Shepherd was not preformed
alongside the soil power sensor and Rocketlogger.

The CurrentRanger was only designed to measure low current.
To characterize MFCs power is desired requiring both voltage and
current measurements. Either modifications to the board or a sepa-
rate device is required to get the voltage output. Thus the Curren-
tRanger is not an all-in-one solution to monitoring MFCs.

To address these challenges, we designed a custom PCB for low-
frequency micropower sensing. Compared to the currently used
Rocketlogger, our Soil Power (SPS) board consumes 5 times less
power, and is an order of magnitude lower in cost.

3 SYSTEM DESIGN

Our soil power sensor board drew inspiration from version 4 of
the CurrentSense board by Lab11 [13]. Specifically, we used similar
routing and placement of headers and switches as the CurrentSense
board. However, we added voltage sensing to our board allowing
us to simultaneously measure voltage and current, and thus dig-
itally calculate the power flowing through the sensor board. The
hardware design files for our board are available on GitHub [16].
The soil power sensor board measures the voltage and current of
the attached source, and presents the measurements as voltage read-
ings that an analog to digital converter (ADC) can interpret to then
combine into a power reading. In this paper, we use a Teensy 3.6.
The Teensy was chosen over other microcontrollers because of
its ease of use and availability. Using the Teensyduino framework
allowed us to leverage the simplicity of coding using Arduino. An-
other lower power microcontroller could easily be substituted for
the Teensy. The sensor board consists of two primary off-the-shelf

! The RocketLogger design is open-source, which makes it possible to fabricate your
own unit at a lower cost. The cost was quoted for a fully assembled and calibrated
rocketlogger.
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components: a MAX40204 current-sense amplifier, and an OPA820
high-speed operational amplifier configured in 2X gain mode to
buffer the voltage of the input. We used the MAX40204 primar-
ily for its ability to sense currents even when its sense pins are
both near 0 V. The MAX40204 supports selecting bi-directional or
uni-directional sensing, and two gain settings, 10 V/v and 100 V/v
that are all user configurable. The configurations would allow the
board to be adapted to MFCs that produce different power outputs.
Limited changes to the configuration need to be made after con-
figuration, thus not requiring a more complicated auto-ranging
feature. We selected the OPA820 for its low power requirements
and stability at low voltage gains. Since soil microbial fuel cells
have maximum observed voltages of approximately 0.7V [18], we
configure the OPA820 in 2X gain mode, to extend the range of volt-
ages that microcontrollers may be able to detect with their built-in
ADCs.

To provide more flexibility when sensing currents, we added a
rotary switch with seven resistors (one of which is a 0 Q resistor for
calibration) connected to the sense pins of the MAX40204. All of the
resistors had 1% tolerances to reduce the error between the ideal and
measured values. The resistor selection was based on the maximum
supported voltage across the sense resistor, allow measurement of
several different current ranges. We used the following equation to
find the appropriate value for Rg:

Vs
Rs = E (1)
Where R is the sense resistor, Vs is the maximum sense voltage
across the resistor (depends on the MAX40204 gain mode and sup-
ply voltage), and I is the maximum current we want to measure
with this resistor. As an example of the selection process, at an
input supply voltage of 3.3 V the maximum sense resistor voltage
is 150 mV at 10X gain, and 33 mV at 100X gain. A maximum power
output of 200 uW from a single microbial fuel cell, at a cell voltage
of 700 mV this indicates a current of almost 300 pA. So, at 100X
gain, we calculate the following:

0.033V
Ry= —— 2
57 0.0003 A @
Ry =110Q 3)

So a sense resistor of approximately 110 Q is required to sense a
maximum current of 300 pA at 100X gain. If we require similar per-
formance with 10X gain, the resistor value must be approximately
500 Q. We followed a similar process for selecting and computing
the maximum currents that can be sensed by a given resistor, and
for convenience we print these values on the PCB silkscreen.

We expose the functionality of the MAX40204 through switches
on the power sensor board. These allow for selecting the gain and
the direction of the current sensing.

The recommended setting for soil microbial fuel cells witha 3.3V
input source is 10X gain with the MAX40204 configured for uni-
directional sensing. This configuration will work with the widest
set of sense resistors that can still operate in the MFC power output
range.

The sense resistance depends on the current state of the MFC,
but will likely be 100 Q or greater.
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The current sense signal is a voltage that can be converted to
the sensed current through the following equations:

V_

1= lout for unidirectional 4)
GR
Viout = V,

I= %Rref for bi-directional (5)

Where, I is the current sensed in amps, Vjoy: is the current signal
output in volts, G is the gain, R is the sense resistor value in ohms,
and V,s is the reference voltage used for bi-directional sensing
mode in volts (typically it is half the supply voltage). The voltage
signal can be converted to a voltage as follows:

Vout
2

V= (6)
Where V is the voltage sensed in volts, and Vpy,; is the voltage signal
output in volts.

4 EVALUATION
4.1 Setup and Filtering

The soil power sensor was designed with a variable resistor Rgepnse,
allowing for adjustments of the range and accuracy of measurable
current output. The voltage output is not affected as by Rgense as
it has a constant gain of of 2 V/v. To handle the input of 0.7 V and
330 pA, we powered the SPS with a 3.3V and set to the following
configuration: Rgense = 249 Q, uni-directional, 10 V/v Gain. We
connected a 2.2 kQ resistor between LOAD and GND, as used when
incubating the MFCs and for previous power measurements [10, 18].
This yields a theoretical measurement range for current and voltage
of 0 pA to 602 pA and 0 V to 1.65 V respectively. As found during the
calibration of the SPS, the limitation of the output swing voltage on
the OPA820 chip limits the output voltage from the SPS to ~2.4V,
resulting in a realized measurable voltage range of 0V to 1.2V.
This is still beyond the max observed voltage of 0.7 V. The current
sensing chip does not have this limitation and the full range can be
measured.

As with all electrical components, ambient noise can come from
various sources. Part of the evaluation process was to filter out the
noise from the soil power sensor and create a consistent method
for calibrating the noise. Two passive low-pass filters were placed
between Vjoy: and Vyyr outputs and the analog input pins to the
Teensy. Each low-pass filter had a 4 kHz cutoff frequency as recom-
mended by the OPA820 datasheet [7].

4.2 Analog to Digital Conversion

As the soil power sensor only handles analog signals, an analog to
digital converter (ADC) is required convert the analog signal to a
digital signal that can be recorded. Regardless of noise in the analog
voltage signals, the ADC must support a minimum resolution of
0.1 pA for the current channel and 1 mV for the voltage channel for
voltage measurements to accurately reproduce the original signal.
If Rgense is not chosen carefully then either the voltage or current
outputs reach the supply rail, clipping the measurements.

The required number of bits was calculated with the following
equation for voltage and current respectively
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Figure 3: Block Diagram of Testing Configuration of the Soil Power Sensor Board

Vref

ny = log, (ZVout) 7)
Vre

= tog, 701 )

In order to obtain a high enough resolution such that no infor-
mation is lost in the conversion process, the voltage and current
channels require 14.01 bits and 13.694 bits, respectively. Thus, the
Teensy 3.6 development board was chosen for its 16-bit ADC and
integration with the Arduino framework. Only 13-bits were used
to hopefully reduce the noise in the ADC measurements. Firmware
was developed to read two analog pins, take the average over n
number of samples, and output the values over serial. For the en-
tirety of the testing n was set to 100, which results in a 100 point
moving average filter. In addition to the moving average filter im-
plemented in software, the internal ADC is already configured to
take the average of four samples. The number of averaged samples
effects the effective number of bits (ENOB) and the sampling rate
of the ADC. As stated earlier, the soil power sensor board was
configured in uni-directional current sensing mode. Limitations of
the Teensy determined this configuration, as its ADC had a input
voltage range of 0V to 3.3V, and therefore would not be able to
measure the negative voltage values.

Now that the number of ADC bits is known, the theoretical
precision can be calculated. This is dependent on the minimum
measurable voltage Vii, from the ADC given by the following

Vre
- ©)
where V,.. r is the reference voltage and n is the number of ADC
bits, in the case of the Teensy, 3.3V and 13 bits respectively. The
equation is only measuring pure voltage, so both Equation 4 and
Equation 6, need to be taken into account to get the minimum

Vinin =
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measurable voltage, thus substituting Equations 9 for Vy,; and
Viour in these equations results in the following

Vre
Vinin = _ref (10)
2(2m)
Vref
Imin = GR(2") (11)

Solving these equations, the accuracy for the voltage and current
channels was obtained: Vijp = 201.4puV and Iyin = 161.78 nA.
Using the maximum measurable values discussed in Section 4.1, the
dynamic range for the voltage and current channels wsa found to
be 75.5dB and 71.4 dB respectively. These values are compared to
RocketLogger performance in Table 1. After finding the accuracy
and selected components, the circuit was calibrated before finding
the measurement precision.

4.3 Calibration

Before evaluating the board, they were first calibrated to account
for component tolerances. A Keithley 2400 Source Measurement
Unit (SMU) was used as a voltage source and to measure the volt-
age/current on the board. The SMU was configured for 2-wire
sensing and connected to Vi, and GND on the soil power sensor.
Measurements taken from the SMU were considered ideal as the
device has a voltage measurement accuracy of 0.012 % + 300 pV and
current measurement accuracy of 0.027 % + 60 nA, which is a far
greater then the desired accuracy for the board.

Using the Arduino framework, measurement firmware was writ-
ten for the Teensy to allow for measuring of current, voltage, and
temperature over serial. The Arduino framework configures the
ADC to continuously sample at 64 kSPS where reading over serial
provides the most recently measured value. Similarly software was
written for a host computer to read the measurements from the



Hardware to enable large-scale deployment and observation of soil microbial fuel cells

Error between Measured and Sourced Voltage
- Optimal .

124 ® Measured h !!
L
. 0n .
LA

14

10 E—— |

Error (mV)
-

&>
{

0.2 0.4 0.6 0.8
Input Voltage (V)

(a) Voltage

SenSys 22, November 6-9, 2022, Boston, MA, USA

Error between Measured and Sourced Current

raes i L
350 Optimal
® Measured °

300 1 e
250 1 e

3 200+ e

5 150 e
100 .

50 1 e

50 100 150 200 250 300 350 400
Input Voltage (uA)

(b) Current

Figure 4: Error for uncalibrated measurements calculated as the difference between observed and measured values. The
deviation between the ideal and measured values appeared to be linear, suggesting a linear regression model to calibrate.

Voltage Channel Accuracy Calibrated

1.064 === Idea
—— SPS

2 1.04 4 RocketLogger
2
G 1.02 1
€
g
2 e
2 1.00 = pm s .
[
=
£0.981
®
K9]
& 0.96 1

0.94

02 0.4 0.6 0.8
Input Voltage (V)

(a) Voltage Channel

Current Channel Accuracy Calibrated

1.06
=== |deal
1.05 4 —— SPS
g RocketLogger
< 104
c
9
5 1.031
3
w
© 1.02
2L
4
'5101-
k- N
o \
100 per=snnnnaasscleslesfsaresbosenomcsmosomenosnnn
0.99

50 100 150 200 250 300 350 400 450
Input Current (uA)

(b) Current Channel

Figure 5: DC channel accuracy 24 hours after calibration. The error bars are +1¢ intervals. A coefficient of determination (r?)
value of > 0.99 for both current and voltage channels supports the assumption that the correlation was linear. For the soil
power sensors had a sample size of n = 10 at each voltage step, while the Rocketlogger had a sample size of n = 538.

Teesny over serial and control the current/voltage provided to the
board from the SMU.. The resulting measurements were recorded
in csv format. All the sources and data collected are open source[8].
The process was repeated at different ambient temperatures to
alllow for calibration of thermal drift.

The integral nonlinearity of both the current and voltage chan-
nels are shown in Figure 4. The current and voltage channels on
the SPS were calibrated independently using linear regression
with ADC current/voltage readings as inputs and sourced cur-
rent/voltage as outputs in terms of pA/V. The regression was pre-
formed using sklearn’s LinearRegression[20].
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4.4 Evaluation Data Collection

The evaluation data was collected using the same configuration
for the calibration data discussed in Section 4.3. The evaluation
measurements were taken 24 hours after the initial calibration. The
mean average error (MAE) was computed across the entire range
of voltage measurements to get the min, mean, and max values in
Table 1. Plots of the accuracy for both our soil power sensor and a
Rocketlogger are shown in Figure 5. Measurements were collected
with a single linear sweep from voltages 0.1V to 0.95V with a
step of 0.05V. We noted large jumps in the Rocketlogger error
for particular values, despite repeated measurements over a 24h
period. We found that our soil power sensing board can measure
voltage with an average accuracy of 0.61 % + 201.4 uV and current
with an average accuracy of 1.01 % + 161.78 nA. This comparable
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Table 1: Summary of Soil Power Sensor board performance characteristics compared to the Rocketlogger and Shepherd.

Soil Power Sensor Rocketlogger Shepherd

Min Avg Max
Voltage Range (V) 0 - 1.2 +5V1I* 10pVito3V
Current Range 0 - 602pA | +2mA (low current mode)*| 0 mA to 50 mA
Voltage Accuracy 0% 0.18% + 201.4 mV 0.61% 0.26% + 13 mV° 19.53uV £+ 0.01%
Current Accuracy 0.11% 0.37% + 161.78 nA 1.01% | 2.19% + 4nA® 381nA £0.07%
Sampling Rate (kSPS) 0 - 45 1to 45" 100
Voltage Dynamic Range (dB) - - 75.5 - -
Current Dynamic Range (dB) - - 71.4 172* -
Idle Power Consumption (W)2 - ~ 0.415 - ~ 2.35 1.725
Logging Power Consumption (W)3| - ~ 0.429 - ~2.35 -
Cost per unit (USD) - $53.71% - $1500° $60.9

1

Taken while waiting for serial input
Taken while continuously sampling ADC via "cont" command
Parts, fabrication and assembly for a run of 50 units.

aoe W

unit at the time of this writing.
Value taken from datasheet

+

to the Rocketlogger, which we measured to have average accuracy
0f 0.26 % + 13 1V and 2.19 % + 4 nA in the ranges of interest. This is
significantly higher than the values stated in the datasheet (0.02 %
and 0.03 %, respectively), largely due to spikes in error observed for
particular source values.

4.5 Power Consumption

The power consumption for the soil power sensing system (soil
power sensor board plus Teensy) and RocketLogger were measured
with a AT35 USB Tester connected to a USB 3.0 port on a laptop. The
RocketLogger was configured to match the logging capabilities of
the SPS with channels V1, I1L enabled. Measurements were taken
during idle and while logging. The RocketLogger was configured
via the web interface to sample at a rate of 1kSPS to a binary file.
The power consumption for the SPS while idle was taken while
waiting for a serial command. The measurements are shown in
Table 1.

5 DISCUSSION AND CONCLUSION

The soil power sensor board is that is a straightforward, standalone
board that can be used with any system that has an ADC allowing
for more flexibility in the system design. In the case of the eval-
uation, the ADC on the Teensy 3.6 was used to read the voltage
levels. With the Teensy being Arduino compatible, there is already
alarge variety of expansion boards and modules to fit future system
requirements such as remote logging.

We have established that our soil power sensing board is can
measure power with an minimum accuracy of 1.62 % + 32.5828 pW
in the ranges of 0 yW to 722.4 uW. Even at a fraction of the cost
of current commercially available systems, it performs well. This
will enable inexpensive deployment and monitoring of MFCs in a
broad range of environments. As of now deployments are limited
to only measuring the power output. The deployed MFCs are not
being used to power sensors. In the design, low power operation

911

Taken from the max output voltage from Vzy, opamp voltage swing is the limiting factor.

Commercially available for $1500, but the design is open-source. The cost of parts to make DIY Rocketloggers (excluding fabrication and assembly) is ~$350+ per

was emphasised to allow for long term remote deploys powered by
conventional batteries.

During testing of the soil power sensor board we overlooked
that the resistance of the current sensor may not be negligible, and
may need to be taken into account when connecting it in series
with other equipment.

Finally, this board does not compute power on its own; an ex-
ternal device is required to digitally measure current/voltage and
compute the power. In the evaluation of the board, a Teensy 3.6
was used to read the current and voltage.

In the future we propose a revision of the board to integrate a low-
power MCU such as the MSP430 series and low-power communica-
tions such as LoRa, NB-IoT [15] or RF backscatter [9, 11, 19] along
with a dedicated ADC to allow for bi-directional current/voltage
sensing. The bi-directional mode can be used to facilitate investi-
gating the adverse voltage reversal phenomenon in MFCs [12].
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